

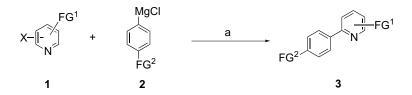
Tetrahedron Letters 42 (2001) 5717-5719

TETRAHEDRON LETTERS

Preparation of polyfunctional pyridines by a palladium(0)-catalyzed cross-coupling of functionalized aryl Grignard reagents

Véronique Bonnet,^a Florence Mongin,^b Francois Trécourt,^b Guy Quéguiner^b and Paul Knochel^{a,*}

^aLudwig-Maximilians-Universität München, Institut für Organische Chemie, Butenandtstr. 5-13, Haus F, 81377 München, Germany


^bLaboratoire de Chimie Organique Fine et Hétérocyclique de l'IRCOF associé au CNRS, INSA de Rouen, BP 08, 76131 Mont-Saint-Aignan, France

Received 21 June 2001

Abstract—Difunctionalized pyridines can be prepared by a Pd(0)-catalyzed cross-coupling of functionalized arylmagnesium compounds with chloro- or bromopyridines at temperatures as low as -40° C. An addition–elimination mechanism involving a palladate intermediate is proposed. © 2001 Elsevier Science Ltd. All rights reserved.

The preparation of polyfunctional heterocycles is an important synthetic goal because of the multiple applications of these molecules.1 Transition metal cross-couplings have proven to be an important method for preparing a number of complex heterocycles.² The major limitation of this approach is the moderate reactivity of typical organometallics used, such couplings as organozincs, organoboronic acids or organotin derivatives.³ More reactive organometallics suffer from a moderate functional group tolerance. Recently, we have reported a new preparation of polyfunctional aryl- and heteroarylmagnesium compounds via a halogen-magnesium exchange reaction.⁴ Herein, we wish to report remarkably mild reaction conditions allowing a palladium-catalyzed cross-coupling of functionalized pyridyl halides of type 1 with functionalized arylmagnesium reagents of type 2 leading to polyfunctional pyridines of type 3 (see Scheme 1 and Table 1). Already several Stille, Suzuki and Negishi cross-coupling reactions have been reported with chloropyridines and chloroquinolines.⁵ In most cases, these reactions proceed in refluxing THF. These conditions are not suitable for functionalized Grignard compounds of type **2** bearing an ester or a cyano group. More appropriate would be a related nickel-catalyzed reaction using pyridyl bromides,⁶ however the toxicity of nickel salts led us to explore an alternative route.

We found that by treating phenylmagnesium chloride (**2a**: 1.2 equiv.) with ethyl 6-bromonicotinate (**1a**: 1.0 equiv.) with bis(dibenzylideneacetone)palladium(0); (Pd(dba)₂: 5–10 mol%) and 1,1'bis(diphenylphosphino)-ferrocene (dppf, 5–10 mol%)⁷ in THF at –40°C for 6 h, a fast cross-coupling reaction is observed leading to the 6-phenyl-substituted nicotinic derivative **3a** in 95%

Scheme 1. Cross-coupling reactions of functionalized magnesium reagents: X = Cl, Br; $FG^1 = CN$, CO_2Et , Br; $FG^2 = H$; CO_2Me , CN; (a) Pd(dba)₂ (5–10% mol), dppf or *t*-Bu₃P (5–10% mol).

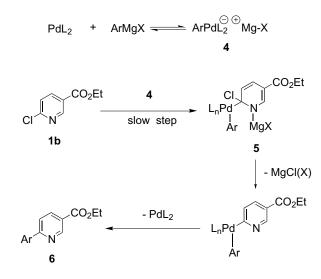
Keywords: palladium-catalysis; pyridine synthesis; functionalized organomagnesium reagent; heterocycle synthesis.

^{*} Corresponding author. Fax: +49-(0)89-2180-7680; e-mail: paul.knochel@cup.uni-muenchen.de

Entry	Grignard reagent	Pyridyl halide	Conditions (°C, h)	Product of Type 3	Yield (%) ^a
		x N 1		Ph N CO ₂ Et	
1	2a: PhMgCl	1a: X=Br	-40, 6		95
2	2a: PhMgCl	1b: X=Cl	-40, 6		92
3	MeO ₂ C	1b	-40, 6	CO ₂ Et	95
	2b			MeO ₂ C 3b	
4	NC MgCi 2c	1a	-40, 6	NC 3c	87
5	2b	Br N CN 1c	-40, 6	MeO ₂ C 3d	86
6	2b	Br N 1d	-20, 4	MeO ₂ C 3e	90
7	2a	Br N 1e	0, 18 ^b	Ph CO_2Et N $3f$	73
8	2b	1e	0, 18 ^b	CO ₂ Me CO ₂ Et	63
9	2b	Br Br N 1f	-5,18 ^b	3g MeO ₂ C Br	62
				3h	

 $\label{eq:constraint} \textbf{Table 1. Polyfunctional pyridines 3a-3h obtained by a palladium(0)-catalyzed cross-coupling of arylmagnesium reagents with chloro- or bromo-pyridines$

^a Yield of analytically pure products


^b This reaction has been performed with *t*-Bu₃P (10 mol%) and Pd(dba)₂ (10 mol%).

yield. Remarkably, the same smooth reaction is observed with the corresponding chloropyridine **1b** leading to **3a** in 92% yield (entries 1 and 2 of Table 1).

These mild conditions allow the extension of this crosscoupling to functionalized arylmagnesium compounds such as the ester-substituted Grignard reagent (2b) and 4-cyanophenylmagnesium chloride (2c). These two organometallics are stable up to 0°C. We have tested the cross-coupling reaction between 2-bromo-4methylpyridine and phenylmagnesium chloride (**2a**) with the usual catalyst system at -25° C over 18 h. No deprotonation of the methyl group was noticed⁸ and we obtained the cross-coupled product quantitatively.⁹ The exceptionally fast palladium-catalyzed cross-coupling with 2-halogenopyridines can be explained assuming an addition–elimination mechanism to 2-chloropyridine (**1b**). The high electrophilicity of the pyridine facilitates

the initial addition step to PdLn or more likely of the related ate-species ArPdLn⁻ MgX⁺ (4) obtained by the reaction of PdL₂ with the Grignard reagent leading to the stabilized magnesium amide 5, which after elimination of a chloride and subsequent reductive elimination furnishes the product 6 (Scheme 2).¹⁰ We have observed that the cross-coupling reaction proceeds under such mild conditions only when using an arylmagnesium reagent. The corresponding arylzinc derivative does not react under the same conditions and only gives a slow reaction at higher temperature (0°C) supporting that the oxidative addition may involve the palladate species 4. Organozinc reagents have less tendency to form ate-species due to the more covalent nature of the C-Zn bond. The importance of the carbethoxy group in position 3, which is able to stabilize the excess negative charge of 5 by resonance, can be established since the corresponding 4-substituted carbethoxy-2-bromopyridine reacts only at -20°C with the Grignard reagent 2b leading to the cross-coupling product 3e in 90% yield (entry 6 of Table 1).¹¹ No reaction occurs in the absence of the palladium(0) catalyst. 3-Halo-substituted pyridines also react but since the extra-stabilization due to the formation of an intermediate of type 5 is no longer possible, higher temperatures are required for the cross-coupling. In these cases it has been advantageous to use t-Bu₃P as ligand¹² (10 mol%). Under these conditions a cross-coupling with phenylmagnesium chloride (2a) and 4-carbomethoxyphenylmagnesium chloride (2b) can be achieved at 0°C within 18 h in good yields (63-73%; entries 7 and 8).

In summary, we have found very mild reaction conditions allowing the palladium-catalyzed cross-coupling of functionalized arylmagnesium compounds with various chloro- and bromo-pyridines leading to polyfunctional pyridines which are of interest for various pharmaceutical applications.

Scheme 2. Possible mechanism for the Pd(0)-catalyzed substitution of 2-chloropyridines by arylmagnesium compounds.

Acknowledgements

We thank the DFG (Leibniz-Program) and the CNRS for financial support. We thank Chemetall GmbH (Frankfurt) and the Degussa AG (Hanau) for the generous gift of chemicals.

References

- (a) Katritzky, A. R. Handbook of Heterocyclic Chemistry; Pergamon Press, 1985; (b) Gilchist, T. L. Heterocyclic Chemistry; Longman, 1997.
- (a) Li, J. J.; Gribble, G. W. Palladium in Heterocyclic Chemistry; Tetrahedron Organic Chemistry Series, Pergamon, 2000; Vol. 20; (b) Snieckus, V. Chem. Rev. 1990, 90, 879–933.
- 3. *Metal-Catalyzed Cross-Coupling Reactions*; Diederich, F.; Stang, P. J., Eds.; Wiley-VCH: Weinheim **1998**.
- (a) For a short review, see: Rottländer, M.; Boymond, L.; Bérillon, L.; Leprêtre, A.; Varchi, G.; Avolio, S.; Laaziri, H.; Quéguiner, G.; Ricci, A.; Cahiez, G.; Knochel, P. *Chem. Eur. J.* 2000, *6*, 767–770; (b) Trécourt, F.; Breton, G.; Bonnet, V.; Mongin, F.; Marsais, F.; Quéguiner, G. *Tetrahedron Lett.* 1999, *40*, 4339–4342; (c) Trécourt, F.; Breton, G.; Bonnet, V.; Mongin, F.; Marsais, F.; Quéguiner, G. *Tetrahedron* 2000, *56*, 1349–1360; (d) Bolm, C.; Pupowicz, D. *Tetrahedron Lett.* 1997, *38*, 7349–7352.
- Ciufolini, M. A.; Mitchell, J. W.; Roschangar, F. Tetrahedron Lett. 1996, 37, 8281–8284.
- Böhm, V. P. W.; Weskamp, T.; Gstöttmayr, C. W. K.; Herrmann, W. A. Angew. Chem., Int. Ed. 2000, 39, 1602–1604. This method proves to be unsatisfactory with functionalized arylmagnesium compounds.
- Hayashi, T.; Konishi, M.; Kobori, Y.; Kumada, M.; Higuchi, T.; Hirotsu, K. J. Am. Chem. Soc. 1984, 106, 158–163.
- Pasquinet, E.; Rocca, P.; Marsais, F.; Godard, A.; Quéguiner, G. *Tetrahedron* 1998, 54, 8771–8782.
- Commins, D. L.; Killpack, M. O. *Heterocycles* 1990, 31, 2025–2028.
- 10. For a related mechanistic approach, see: Fauvarque, J. F.; Pflüger, F. J. Organomet. Chem. **1981**, 208, 419–427.
- Typical procedure, preparation of methyl 4-(5-cyano-2-11. pyridyl) benzoate (3d): Isopropylmagnesium chloride (2 M, 1.2 mmol in ether) was added to a solution of methyl 4-iodobenzoate (1.2 mmol) in THF (4 mL) at -40°C under argon and the mixture was stirred for 40 min leading to the functionalized arylmagnesium chloride. The resulting mixture was transferred into a solution of 2-bromo-5cyanopyridine (1c) (1 mmol), bis(dibenzylideneacetone)palladium(0) (5.0 mol%) and 1,1'-bis(diphenylphosphino)ferrocene (5.0 mol%) in THF (2 mL) at -40°C. Stirring was continued at this temperature for 6 h followed by quenching using an aqueous saturated NH₄Cl solution (5 mL). Extraction by diethyl ether, drying over MgSO₄ and solvent removal afforded a crude solid, which was purified by flash chromatography on silica (elution with CH₂Cl₂) affording the pure product 3d as a white solid $(mp = 162^{\circ}C, 210 mg, 86\% \text{ yield}).$
- (a) Littke, A. F.; Fu, G. C. Angew. Chem. 1998, 110, 3586–3587; (b) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. Engl. 1998, 38, 3387–3388.